
ASYNC // AWAIT

Software engineer here in Zurich working for Zühlke Engineering AG

Originated from Germany

I ❤ Blazor and C# / .NET

❤ NET User Group Zurich - Sharing knowledge / ideas is just great

Contact: 
/ 
/ 







Even though these slides are written in Html / CSS / JavaScript

Wrote my own blog solely in Blazor, because I love that piece of
technology







 LinkedIn My Blog Github

https://www.linkedin.com/in/steven-giesel/
https://bloglinkdotnet.azurewebsites.net/
https://github.com/linkdotnet/

 DISCLAIMER

As the nature of the topic can get quite complex, I will (over)simplify certain aspects. Also a
basic prior
knowledge to async/await is mandatory.

Take these information with a grain of salt





AGENDA

1 Asynchronous Programming vs Parallel Programming

2 Deadlock and ConfigureAwait

3 State-Machine (very briefly and over-simplified)

4 Pitfalls & General Tips

5 ValueTask

THOUGHT-EXPERIMENT:
What do you think is the runtime of each of the code snippets?

Snippet A: Snippet B:
{

	 var a = Task.Delay(1000);

	 var b = Task.Delay(1000);

	 var c = Task.Delay(1000);

	 var d = Task.Delay(1000);

	 var e = Task.Delay(1000);

	 await a;

	 await b;

	 await c;

	 await d;

	 await e;

}

{

	 await Task.Delay(1000);

	 await Task.Delay(1000);

	 await Task.Delay(1000);

	 await Task.Delay(1000);

	 await Task.Delay(1000);

}

ASYNCHRONOUS PROGRAMMING VS PARALLEL
PROGRAMMING

Imagine you want to cook breakfast, how do you do that?

1. Pour a cup of coffee
2. Heat up a pan, then fry two eggs
3. Fry three slices of bacon.
4. Toast two pieces of bread
5. Add butter and jam to the toast
6. Pour a glass of orange juice

SYNCHRONOUS: ASYNCHRONOUS

ASYNCHRONOUS, CONCURRENCY,
PARALLELISM???

Concurrency: is when two or more tasks can start, run, and complete in
overlapping time periods. It doesn't
necessarily mean they'll ever both be running at the
same instant.



Parallelism: is when tasks literally run at the same time,
e.g., on a multicore processor. (Parallelism is a special
form of concurrency)



Asynchronous: is a mechanism to achieve concurrency (done
via
callbacks in C# and Javascript) but does not
necessary involve multiple
threads.



DEADLOCK / CONFIGUREAWAIT()

Imagine the following ASP.NET code in a controller:
public string GetSomething(string id)
{
	 var task = DoWorkAsync();
	 task.Wait();
	 return "Done";
}	

private async Task DoWorkAsync()
{
	 Debug.WriteLine("Welcome");
	 await Task.Delay(500);
	 Debug.WriteLine("We are done");
}

1
2
3
4
5
6
7
8
9
10
11
12
13

	 var task = DoWorkAsync();

public string GetSomething(string id)1
{2

3
	 task.Wait();4
	 return "Done";5
}	6
 7
private async Task DoWorkAsync()8
{9
	 Debug.WriteLine("Welcome");10
	 await Task.Delay(500);11
	 Debug.WriteLine("We are done");12
}13

	 var task = DoWorkAsync();

	 Debug.WriteLine("Welcome");

public string GetSomething(string id)1
{2

3
	 task.Wait();4
	 return "Done";5
}	6
 7
private async Task DoWorkAsync()8
{9

10
	 await Task.Delay(500);11
	 Debug.WriteLine("We are done");12
}13

	 var task = DoWorkAsync();

	 await Task.Delay(500);

public string GetSomething(string id)1
{2

3
	 task.Wait();4
	 return "Done";5
}	6
 7
private async Task DoWorkAsync()8
{9
	 Debug.WriteLine("Welcome");10

11
	 Debug.WriteLine("We are done");12
}13

	 task.Wait();

	 await Task.Delay(500);

public string GetSomething(string id)1
{2
	 var task = DoWorkAsync();3

4
	 return "Done";5
}	6
 7
private async Task DoWorkAsync()8
{9
	 Debug.WriteLine("Welcome");10

11
	 Debug.WriteLine("We are done");12
}13

The request / main thread is waiting while the async / offloaded function is waiting to go to
the same context as before
(the main thread).

LET'S SEE THIS IN ACTION IN ASP.NET AND IN A
CONSOLE APPLICATION

WHAT IS A SYNCHRONIZATIONCONTEXT? WHAT
IS A TASK-SCHEDULER?

LET'S UNWRAP THAT A BIT

TASKSCHEDULER
Simplified:

TaskScheduler is responsible for executing scheduled tasks

Mainly there are two scheduler: thread pool task scheduler and synchronization
context task scheduler

Default is thread pool task scheduler. ASP.NET uses the later one







SYNCHRONIZATIONCONTEXT
Simplified:

Different frameworks have different mechanism for communicating between tasks

SynchronizationContext is the abstraction of exactly that - how to communicate

It's a representation of the current environment where our code is running
in

It provides a way to queue a unit of work to a context

Saved on the Task-object











WHY IS IT NEEDED?

Classic example: Windows Forms / WPF

Windows Forms or WPF only allows the thread which created an UI-element to modify it,
otherwise exception

When you offload work and "come back" you still want to be able to update UI elements

The synchronization context allows exactly that

You can offload work to a background worker and come back to the exact same context (which
is allowed to
update/render on the UI-Element)









AND ASP.NET?

It is mainly used for HttpContext.Current, Culture Information, Identity Information ...

WHAT CAN I DO TO PREVENT THE DEADLOCK?

CONFIGUREAWAIT TO THE RESCUE

By default calls to an awaited task will capture the current context and attempt to resume
execution on the
context once complete

Setting does the
following:



 ConfigureAwait(continueOnCapturedContext: false)

When we re-enter from the asynchronous code to the awaiter, we basically tell: "I don't
mind which
context continues the execution"

Best suited for libraries. Maybe your code will run in a console
application or in ASP.NET... no one
knows 😉

Small performance improvement because you "miss out" the synchronization



The truth is, you will have no context at all. Even if you are on the same thread





THAT SOUNDS AWESOME. LET'S DO IT
EVERYWHERE THEN!

There is a pitfall

Earlier we discussed that the AspNetSynchronizationContext is responsible for
HttpContext.Current, Culture
Information, ...

As you have no context, there is no information anymore present (for the continuation
function)





public IEnumerable<string> Get()
{
	 var httpContext = HttpContext.Current; // Is NOT null
	 Debug.WriteLine("Before DoWorkAsync");
	 var task = DoWorkAsync();
	 task.Wait();
	 httpContext = HttpContext.Current; // Is NOT null
	 Debug.WriteLine("After DoWorkAsync");

	 return new string[] { "value1", "value2" };
}

private async Task DoWorkAsync()
{
	 var httpContext = HttpContext.Current; // Is NOT null
	 Debug.WriteLine("Welcome");
	 await Task.Delay(500).ConfigureAwait(false);
	 httpContext = HttpContext.Current; // Is null
	 Debug.WriteLine("We are done");
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

	 var httpContext = HttpContext.Current; // Is NOT null

	 httpContext = HttpContext.Current; // Is NOT null

	 var httpContext = HttpContext.Current; // Is NOT null

	 httpContext = HttpContext.Current; // Is null

public IEnumerable<string> Get()1
{2

3
	 Debug.WriteLine("Before DoWorkAsync");4
	 var task = DoWorkAsync();5
	 task.Wait();6

7
	 Debug.WriteLine("After DoWorkAsync");8
 9
	 return new string[] { "value1", "value2" };10
}11
 12
private async Task DoWorkAsync()13
{14

15
	 Debug.WriteLine("Welcome");16
	 await Task.Delay(500).ConfigureAwait(false);17

18
	 Debug.WriteLine("We are done");19
}20

PROPER SOLUTION: ASYNC / AWAIT
EVERYTHING

WHY IS IT DIFFERENT THAN THE SYNCHRONOUS VERSION?

If the entire call stack is asynchronous there is no problem because, once await is reached
the
original thread
is released, freeing the request context

Therefore no deadlock





public async Task<IEnumerable<string>> Get()

{

	 var httpContext = HttpContext.Current; // Is NOT null

	 Debug.WriteLine("Before DoWorkAsync");

	 var task = DoWorkAsync();

	 await task;

	 httpContext = HttpContext.Current; // Is NOT null

	 Debug.WriteLine("After DoWorkAsync");

	 return new string[] { "value1", "value2" };

}

private async Task DoWorkAsync()

{

	 var httpContext = HttpContext.Current; // Is NOT null

	 Debug.WriteLine("Welcome");

	 await Task.Delay(500);

	 httpContext = HttpContext.Current; // Is NOT null

	 Debug.WriteLine("We are done");

}

ANOTHER ONE: USE ASP.NET CORE

ASP.NET Core has no Synchronization Context

Therefore you can't have the same deadlock as described above





STATE-MACHINE

ass StockPrices

 private Dictionary _stockPrices;
 public async Task GetStockPriceForAsync(string companyId)
 {
 if (string.IsNullOrEmpty(_companyId)) { throw new ArgumentNullException();

 await InitializeMapIfNeededAsync();
 _stockPrices.TryGetValue(companyId, out var result);
 return result;
 }

 private async Task InitializeMapIfNeededAsync()
 {
 if (_stockPrices != null)
 return;

 await Task.Delay(42);
 // Getting the stock prices from the external source and cache in memory.
 _stockPrices = new Dictionary { { "MSFT", 42 } };
 }

	 	 	 	 	

 public async Task GetStockPriceForAsync(string companyId)
 {
 if (string.IsNullOrEmpty(_companyId)) { throw new ArgumentNullException();

 await InitializeMapIfNeededAsync();
 _stockPrices.TryGetValue(companyId, out var result);
 return result;
 }

ass StockPrices

 private Dictionary _stockPrices;

 private async Task InitializeMapIfNeededAsync()
 {
 if (_stockPrices != null)
 return;

 await Task.Delay(42);
 // Getting the stock prices from the external source and cache in memory.
 _stockPrices = new Dictionary { { "MSFT", 42 } };
 }

	 	 	 	 	

 await InitializeMapIfNeededAsync();

ass StockPrices

 private Dictionary _stockPrices;
 public async Task GetStockPriceForAsync(string companyId)
 {
 if (string.IsNullOrEmpty(_companyId)) { throw new ArgumentNullException();

 _stockPrices.TryGetValue(companyId, out var result);
 return result;
 }

 private async Task InitializeMapIfNeededAsync()
 {
 if (_stockPrices != null)
 return;

 await Task.Delay(42);
 // Getting the stock prices from the external source and cache in memory.
 _stockPrices = new Dictionary { { "MSFT", 42 } };
 }

	 	 	 	 	

class GetStockPriceForAsync_StateMachine
{
	 enum State { Start, Step1, }
	 private readonly StockPrices @this;
	 private readonly string _companyId;
	 private readonly TaskCompletionSource _tcs;
	 private Task _initializeMapIfNeededTask;
	 private State _state = State.Start;
	
	 public GetStockPriceForAsync_StateMachine(StockPrices @this, string com
	 {
	 	 this.@this = @this;
	 	 _companyId = companyId;
	 }
	
	 public void Start()
	 {
	 	 try
	 	 {
	 	 	 if (_state == State.Start)
	 	 	 {
	 	 	 	 // The code from the start of the method to the first 'await'.
	
	 	 	 	 if (string.IsNullOrEmpty(_companyId))
	 	 	 	 	 throw new ArgumentNullException();
	
	 	 	 	 _initializeMapIfNeededTask = @this.InitializeMapIfNeeded();
	
	 	 	 	 // Update state and schedule continuation
	 	 	 	 _state = State.Step1;
	 	 	 	 initializeMapIfNeededTask.ContinueWith(=> Start());
	 	 	 }
	 	 	 else if (_state == State.Step1)
	 	 	 {
	 	 	 	 // Need to check the error and the cancel case first
	 	 	 	 if (_initializeMapIfNeededTask.Status == TaskStatus.Canceled)
	 	 	 	 	 _tcs.SetCanceled();

l if (i iti li M IfN d dT k St t T kSt t F lt d)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

	 	 	 if (_state == State.Start)
	 	 	 {
	 	 	 	 // The code from the start of the method to the first 'await'.
	
	 	 	 	 if (string.IsNullOrEmpty(_companyId))
	 	 	 	 	 throw new ArgumentNullException();
	
	 	 	 	 _initializeMapIfNeededTask = @this.InitializeMapIfNeeded();
	
	 	 	 	 // Update state and schedule continuation
	 	 	 	 _state = State.Step1;
	 	 	 	 initializeMapIfNeededTask.ContinueWith(=> Start());
	 	 	 }

class GetStockPriceForAsync_StateMachine1
{2
	 enum State { Start, Step1, }3
	 private readonly StockPrices @this;4
	 private readonly string _companyId;5
	 private readonly TaskCompletionSource _tcs;6
	 private Task _initializeMapIfNeededTask;7
	 private State _state = State.Start;8
	9
	 public GetStockPriceForAsync_StateMachine(StockPrices @this, string com10
	 {11
	 	 this.@this = @this;12
	 	 _companyId = companyId;13
	 }14
	15
	 public void Start()16
	 {17
	 	 try18
	 	 {19

20
21
22
23
24
25
26
27
28
29
30
31
32

	 	 	 else if (_state == State.Step1)33
	 	 	 {34
	 	 	 	 // Need to check the error and the cancel case first35
	 	 	 	 if (_initializeMapIfNeededTask.Status == TaskStatus.Canceled)36
	 	 	 	 	 _tcs.SetCanceled();37

l if (i iti li M IfN d dT k St t T kSt t F lt d)38

	 	 	 else if (_state == State.Step1)
	 	 	 {
	 	 	 	 // Need to check the error and the cancel case first
	 	 	 	 if (_initializeMapIfNeededTask.Status == TaskStatus.Canceled)
	 	 	 	 	 _tcs.SetCanceled();

l if (i iti li M IfN d dT k St t T kSt t F lt d)

class GetStockPriceForAsync_StateMachine1
{2
	 enum State { Start, Step1, }3
	 private readonly StockPrices @this;4
	 private readonly string _companyId;5
	 private readonly TaskCompletionSource _tcs;6
	 private Task _initializeMapIfNeededTask;7
	 private State _state = State.Start;8
	9
	 public GetStockPriceForAsync_StateMachine(StockPrices @this, string com10
	 {11
	 	 this.@this = @this;12
	 	 _companyId = companyId;13
	 }14
	15
	 public void Start()16
	 {17
	 	 try18
	 	 {19
	 	 	 if (_state == State.Start)20
	 	 	 {21
	 	 	 	 // The code from the start of the method to the first 'await'.22
	23
	 	 	 	 if (string.IsNullOrEmpty(_companyId))24
	 	 	 	 	 throw new ArgumentNullException();25
	26
	 	 	 	 _initializeMapIfNeededTask = @this.InitializeMapIfNeeded();27
	28
	 	 	 	 // Update state and schedule continuation29
	 	 	 	 _state = State.Step1;30
	 	 	 	 initializeMapIfNeededTask.ContinueWith(=> Start());31
	 	 	 }32

33
34
35
36
37
38

	 private readonly TaskCompletionSource _tcs;

	 	 	 	 initializeMapIfNeededTask.ContinueWith(=> Start());

	 	 	 	 	 _tcs.SetCanceled();

class GetStockPriceForAsync_StateMachine1
{2
	 enum State { Start, Step1, }3
	 private readonly StockPrices @this;4
	 private readonly string _companyId;5

6
	 private Task _initializeMapIfNeededTask;7
	 private State _state = State.Start;8
	9
	 public GetStockPriceForAsync_StateMachine(StockPrices @this, string com10
	 {11
	 	 this.@this = @this;12
	 	 _companyId = companyId;13
	 }14
	15
	 public void Start()16
	 {17
	 	 try18
	 	 {19
	 	 	 if (_state == State.Start)20
	 	 	 {21
	 	 	 	 // The code from the start of the method to the first 'await'.22
	23
	 	 	 	 if (string.IsNullOrEmpty(_companyId))24
	 	 	 	 	 throw new ArgumentNullException();25
	26
	 	 	 	 _initializeMapIfNeededTask = @this.InitializeMapIfNeeded();27
	28
	 	 	 	 // Update state and schedule continuation29
	 	 	 	 _state = State.Step1;30

31
	 	 	 }32
	 	 	 else if (_state == State.Step1)33
	 	 	 {34
	 	 	 	 // Need to check the error and the cancel case first35
	 	 	 	 if (_initializeMapIfNeededTask.Status == TaskStatus.Canceled)36

37
l if (i iti li M IfN d dT k St t T kSt t F lt d)38

	 private Task _initializeMapIfNeededTask;

	 	 	 	 _initializeMapIfNeededTask = @this.InitializeMapIfNeeded();

class GetStockPriceForAsync_StateMachine1
{2
	 enum State { Start, Step1, }3
	 private readonly StockPrices @this;4
	 private readonly string _companyId;5
	 private readonly TaskCompletionSource _tcs;6

7
	 private State _state = State.Start;8
	9
	 public GetStockPriceForAsync_StateMachine(StockPrices @this, string com10
	 {11
	 	 this.@this = @this;12
	 	 _companyId = companyId;13
	 }14
	15
	 public void Start()16
	 {17
	 	 try18
	 	 {19
	 	 	 if (_state == State.Start)20
	 	 	 {21
	 	 	 	 // The code from the start of the method to the first 'await'.22
	23
	 	 	 	 if (string.IsNullOrEmpty(_companyId))24
	 	 	 	 	 throw new ArgumentNullException();25
	26

27
	28
	 	 	 	 // Update state and schedule continuation29
	 	 	 	 _state = State.Step1;30
	 	 	 	 initializeMapIfNeededTask.ContinueWith(=> Start());31
	 	 	 }32
	 	 	 else if (_state == State.Step1)33
	 	 	 {34
	 	 	 	 // Need to check the error and the cancel case first35
	 	 	 	 if (_initializeMapIfNeededTask.Status == TaskStatus.Canceled)36
	 	 	 	 	 _tcs.SetCanceled();37

l if (i iti li M IfN d dT k St t T kSt t F lt d)38

	 	 	 	 _state = State.Step1;
	 	 	 	 initializeMapIfNeededTask.ContinueWith(=> Start());

class GetStockPriceForAsync_StateMachine1
{2
	 enum State { Start, Step1, }3
	 private readonly StockPrices @this;4
	 private readonly string _companyId;5
	 private readonly TaskCompletionSource _tcs;6
	 private Task _initializeMapIfNeededTask;7
	 private State _state = State.Start;8
	9
	 public GetStockPriceForAsync_StateMachine(StockPrices @this, string com10
	 {11
	 	 this.@this = @this;12
	 	 _companyId = companyId;13
	 }14
	15
	 public void Start()16
	 {17
	 	 try18
	 	 {19
	 	 	 if (_state == State.Start)20
	 	 	 {21
	 	 	 	 // The code from the start of the method to the first 'await'.22
	23
	 	 	 	 if (string.IsNullOrEmpty(_companyId))24
	 	 	 	 	 throw new ArgumentNullException();25
	26
	 	 	 	 _initializeMapIfNeededTask = @this.InitializeMapIfNeeded();27
	28
	 	 	 	 // Update state and schedule continuation29

30
31

	 	 	 }32
	 	 	 else if (_state == State.Step1)33
	 	 	 {34
	 	 	 	 // Need to check the error and the cancel case first35
	 	 	 	 if (_initializeMapIfNeededTask.Status == TaskStatus.Canceled)36
	 	 	 	 	 _tcs.SetCanceled();37

l if (i iti li M IfN d dT k St t T kSt t F lt d)38

Real
Life Example

https://sharplab.io/#v2:CYLg1APgAgDABFAjAVgNwFgBQUDMCBMcAwnAN5ZyUJ5QAcCAbHACID2AggM4CeAdgMYAKAJRwKVcpirSEATkYA6ZgFMANgENugxMIxSqAX3GVcCelAYAeAJa8ALgD44AJWV2ArgCdeXPkNGSMlRQ8hZKapraMLrGMiEsHDwCInpBJgDscIiphlgGQA==

PITFALLS

VERSUS

AND WHAT ABOUT THREADS? ONE TASK = ONE THREAD?

await MyLongRunningTask();

Task longRunningTask = MyLongRunningTask();

await longRunningTask;

THOUGHT-EXPERIMENT:
What do you think is the runtime of each of the code snippets?

Snippet A: Snippet B:
{

	 var a = Task.Delay(1000);

	 var b = Task.Delay(1000);

	 var c = Task.Delay(1000);

	 var d = Task.Delay(1000);

	 var e = Task.Delay(1000);

	 await a;

	 await b;

	 await c;

	 await d;

	 await e;

}

{

	 await Task.Delay(1000);

	 await Task.Delay(1000);

	 await Task.Delay(1000);

	 await Task.Delay(1000);

	 await Task.Delay(1000);

}

CanvasJS.com

https://canvasjs.com/

EXCEPTIONS

NOT PROPERLY AWAITED TASK

WHAT IS THE PROBLEM HERE? WE DO NOT AWAIT?

var ids = new List();

// ...

ids.ForEach(id => _myRepo.UpdateAsync(ids));

	 	 	 	 	

NOW BETTER?

var ids = new List();

// ...

ids.ForEach(async id => await _myRepo.UpdateAsync(ids));

	 	 	 	 	

DEFINITION OF FOREACH:
public void ForEach(Action<T> action)

CAN NOT BE AWAITED. ACCEPTS ONLY ASYNC VOID.
THE SAME APPLIES FOR LINQ TO OBJECT (LIKE SELECT(), WHERE(), ...)

Another one without awaiting...

THIS SEEMS REASONABLE, OR?
public Task<string> GetWithKeywordsAsync(string url)

{

	 using (var client = new HttpClient())

	 	 return client.GetStringAsync(url);

}		 	 	 	

WELL, NO. YOUR DOWNLOAD WILL MOST LIKELY BE ABORTED AS THE CLIENT GETS
DISPOSED.

We saw earlier that only until the first await in GetStringAsync the function is called
synchronously the rest is passed
back as continuation-task. At this point the HttpClient
gets disposed as we go out the using block

DO THIS INSTEAD
public async Task<string> GetWithKeywordsAsync(string url)

{

	 using (var client = new HttpClient())

	 	 return await client.GetStringAsync(url);

}		 	 	 	

AWAIT IN FOREACH

Those calls in the foreach loop are not blocking each other, right?
public static async Task Main(string[] args)

{

	 foreach (var x in new[] { 1, 2, 3 })

	 {

	 	 await DoSomethingAsync(x); // Could also be an HTTP call

	 }

}

private static async Task DoSomethingAsync(int x)

{

	 Console.WriteLine($"Doing {x}... ({DateTime.Now :hh:mm:ss})");

	 await Task.Delay(2000);

	 Console.WriteLine($"{x} done. ({DateTime.Now :hh:mm:ss})");

}

Possible solution if you want to have them asynchronous
public static async Task Main(string[] args)

{

	 var tasks = new List<Task>();

	 	 foreach (var x in new[] { 1, 2, 3 })

	 	 {

	 	 	 var task = DoSomethingAsync(x);

	 	 	 tasks.Add(task);

	 	 }

	

	 	 await Task.WhenAll();

}

Be aware that now no order of execution is guaranteed

Some other pitfalls

Don't use async void (it causes more havoc!). Only exception: Top-Level asynchronous
eventhandler.

Exceptions can't be caught with catch (only inside the async void method)

Horrible to test

Can't be awaited







GENERAL TIPS

Asynchronous and parallel programming are not the same

That said: Task != Thread (even though this is sometimes true)





If you want to nitpick: Often times on Kernel-Level you have a thread for interrupts
(I/O handling).
Someone has to inform you when I/O is done. If you want to know more
about that have a look at
Direct Memory Access (DMA).



 is meant for CPU bound operations and should be used
instead of  Task.Run Task.Factory.StartNew

Be cautious when using this in ASP.NET (Core) as you decrease your scalability

ASP.NET (Core): Each request is one thread, but with Task.Run you will remove one thread
from the
Threadpool

Your thread pool size is finite ;) and depends on various factors like virtual address
space

Just because you can have hundreds of threads from the thread pool doesn't mean they can
be
executed "in parallel"









Try not to mix synchronous code and asynchronous code (and vice versa)

ConfigureAwait(false) in libraries is in general a good idea

How to call async function from sync function:

Use CancellationToken to save some precious resources



Don't use a synchronous function when there is an asynchronous version available
(DbContext.SaveChanges vs DbContext.SaveChangesAsync) in an async function





Exception: Methods that require context: GUI apps which modify UI-elements, ASP.NET
which needs
the HttpContext.Current



  MSDN



https://docs.microsoft.com/en-us/archive/msdn-magazine/2015/july/async-programming-brownfield-async-development

TO SUM IT UP:
USE AWAIT BY DEFAULT (JUSTIFY IF YOU REALLY WANT TO OMIT IT). BE ASYNCHRONOUS IN

THE WHOLE
CHAIN. AND ALWAYS MEASURE FIRST, THEN ACT!

VALUETASK

Simplified version
public readonly struct ValueTask<TResult>

{

	 internal readonly Task<TResult> _task;

	 internal readonly TResult _result;	

}

Can be returned from an asynchronous function

But also from a synchronous one





Here nothing has to be allocated

Only on completion of a asynchronous a Task object has to be allocated





CLASSIC USE CASE

public class WeatherService
{
	 private readonly Dictionary<string, WeatherData> _weatherCache;
	 private readonly IWeatherRepository weatherRepository;

	 public async ValueTask<WeatherData> GetWeatherForCityAsync(string city)
	 {
	 	 if (_weatherCache.ContainsKey(city))
	 	 {
	 	 	 return _weatherCache[city];
	 	 }		

	 	 return await weatherRepository.GetForCityAsync(city);
	 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

	 	 if (_weatherCache.ContainsKey(city))
	 	 {
	 	 	 return _weatherCache[city];
	 	 }		

public class WeatherService1
{2
	 private readonly Dictionary<string, WeatherData> _weatherCache;3
	 private readonly IWeatherRepository weatherRepository;4
 5
	 public async ValueTask<WeatherData> GetWeatherForCityAsync(string city)6
	 {7

8
9
10
11

 12
	 	 return await weatherRepository.GetForCityAsync(city);13
	 }14
}15

	 	 return await weatherRepository.GetForCityAsync(city);

public class WeatherService1
{2
	 private readonly Dictionary<string, WeatherData> _weatherCache;3
	 private readonly IWeatherRepository weatherRepository;4
 5
	 public async ValueTask<WeatherData> GetWeatherForCityAsync(string city)6
	 {7
	 	 if (_weatherCache.ContainsKey(city))8
	 	 {9
	 	 	 return _weatherCache[city];10
	 	 }		11
 12

13
	 }14
}15

Not every code path is async

Safe some time when the synchronous path is taken





BIG NO-NO'S

The following operations should never be performed on a ValueTask instance:

If you do any of the above, the results are undefined.

Awaiting the instance multiple times

Calling AsTask multiple times

Using .Result or .GetAwaiter().GetResult() when the operation hasn't yet completed, or using
them multiple
times

Using more than one of these techniques to consume the instance









SO SHOULD I TAKE IT?
Short answer: No

Long answer: It depends

ValueTask is designed for hot paths where every millisecond and every allocation
matters. These are micro-
optimizations. The pitfalls outweigh the gains in almost every case. As
always measure first, act second.

 Resources / Further Reading

 Repository with all the examples shown plus more (async void
exceptions, benchmark, ...):

 Material about async / await including SynchronizationContext: ,
 and

 Understanding the State-Machine:

 ValueTask:

 Async / await no threads? Why is it responsive?

here
here here here

here
here

here

https://github.com/linkdotnet/DevExAsyncAwait
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
https://docs.microsoft.com/en-us/archive/msdn-magazine/2011/february/msdn-magazine-parallel-computing-it-s-all-about-the-synchronizationcontext
https://ranjeet.dev/understanding-how-async-state-machine-works/
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.valuetask-1?view=net-5.0
https://stackoverflow.com/questions/37419572/if-async-await-doesnt-create-any-additional-threads-then-how-does-it-make-appl

