
LINQ
Explained with sketches

By Steven Giesel

Prologue

This little piece was created with the ulterior motive of
giving beginners a visual and simple introduction to LINQ.
According to the motto: "Pictures say more than a thousand
words".

What is the goal of this little book? It should enable you
to use the right LINQ queries in the right situation. I will
start each time with a small drawing, which will be
completed by a small explanation including a code
example. I'm going to go less into things like "LINQ-To-
Object". Also I will only very briefly touch things like
IQueryable and IEnumerable.

Table of contents

Prologue ..2

Table of contents ..3

What is LINQ? ...6

IENUMERABLE ..7

Mindmap ...9

Filtering ..11

WHERE ...11

TAKE ...12

SKIP ...12

DISTINCT(BY) ..13

OFTYPE ..14

Projection ..15

SELECT ...15

SELECTMANY ...15

Aggregation ..17

COUNT ...17

AGGREGATE ...17

MAX(BY) ...18

Quantification ...19

ANY ...19

ALL ..20

SequenceEquals ...20

Merging ...22

JOIN ...22

ZIP ...23

Element ..24

FIRST ...24

SINGLE ...24

FIRSTORDEFAULT / SINGLEORDEFAULT 25

Materialisation / Conversion 27

TOLOOKUP ...27

TODICTIONARY ..28

TOLIST / TOARRAY ...29

Grouping ...30

GROUPBY ..30

Set ..31

UNION ...31

INTERSECT ..31

Real life samples ...33

Epilog ...34

ABOUT ME ..34

FURTHER RESOURCES / READS 35

VERSION ..35

What is LINQ?

L INQ short for “Language-Integrated Query” is the
name for a set of technologies based on the
integration of query capabilities directly into the C#

language. 1

The target is to have a uniform and structured way to
operate on enumerations. LINQ queries return always the
result as new objects. That ensures that the original
enumeration will not be mutated. This is very important to
remember. All LINQ queries return a new enumeration
instead of deleting, updating or adding new items to the
given one.

Furthermore there are ways to transform LINQ queries to
SQL syntax or use LINQ to go through a XML document.
The basic type all LINQ queries operate on is
IEnumerable.

 Definition: https://docs.microsoft.com/en-us/dotnet/1

csharp/programming-guide/concepts/linq/

IEnumerable

The basic type all LINQ queries operate on is IEnumerable.
Without going into too much detail, it is crucial to
understand that IEnumerable does not represent a
“materialised” list. We call this “lazy evaluation”. That
means at the the time of calling LINQ queries we don’t get
the actual results. Only when we enumerate through the
enumeration or call operations like ToList, or Count we
really “create” / “materialise” the object.

Now you will see a small snippet. Don’t worry if you don’t
understand this now. Take it as a motivation to fully
understand this after you read the small book:

We create the enumeration after the list holds 2 elements
(1 and 2). Afterwards we add another number to the list
itself. So how many even numbers do we have in the
enumeration? The answer is: 2. The reason is that we
materialise on Count and not at the moment of creating
the enumeration in the first place. So when we call Count
we have two elements, which are even numbers (2 and 4).
Always keep that in mind.

var list = new List<int>();
list.Add(1);
list.Add(2);

var evenNumbers = list.Where(n => n % 2 == 0);

list.Add(4);
Console.WriteLine($"Even numbers in list:
{evenNumbers.Count()}”);

https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerable?view=net-6.0

Another type always associated with LINQ is IQueryable.
IQueryable is basically IEnumerable plus more and is
exactly that “plus more” part which makes it so unique. For
that I will just list the highlights here and reference to my
blog post: IEnumerable vs IQueryable - What's the
difference which will go into greater detail.

• Both IEnumerable and IQueryable are forward
collections - they don't get materialised right away

• Querying data from the database IEnumerable will
load the data into memory in filter afterwards on the
client

• Querying data from the database IQueryable will filter
first and afterwards send the filtered data to the client

• IQueryable is suitable for querying data from out-
memory

• There can be scenarios where the underlying query
provider can't translate your expression to something
meaningful then you have to switch to IEnumerable

https://docs.microsoft.com/en-us/dotnet/api/system.linq.iqueryable?view=net-6.0
https://steven-giesel.com/blogPost/606cb702-e391-4a26-9ae5-523eeb6196ed
https://steven-giesel.com/blogPost/606cb702-e391-4a26-9ae5-523eeb6196ed

Mindmap

LINQ has many many operations in its toolset for you.
So we can group them in different categories. The
next picture will show you a rough overview so that

you can get a mental picture. I would also advice to come
back to that image time and time again to see where you at.

The upcoming chapters are organised by exactly those
categories.

The real power of LINQ comes when you combine multiple
operations. After the explanation of the LINQ operators you
will find some real world samples where multiple LINQ
operations are used in one statement.

IEnumerable<BlogPost> allBlogPosts = await GetAllBlogPosts();

var publishedBlogPosts = allBlogPosts
 .Where(bp => bp.IsPublished)
 .OrderByDescending(bp => bp.PublishDate)
 .Skip(pageSize * (page - 1))
 .Take(pageSize)
 .ToList();

Filtering

The following chapter describes how one can use LINQ to
filter the enumeration based on the given operation.

Where

With Where we can filter a given list based on our
condition. The method accepts a Predicate. That means we
define a filter function which then gets applied object by
object. If the filter evaluates to true, the element will be
returned in the new enumeration.

var list = new List<int>();
list.Add(1);
list.Add(2);

// Get even numbers
// Result: [2]
var evenNumbers = list.Where(n => n % 2 == 0);

https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.where?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.predicate-1?view=net-6.0

Take

Take allows us to "take" the given amount of elements. If
we have less elements in the array than we want to take,
then Take() will only return the remaining objects.

Skip

With Skip we "skip" the given amount of elements. If we
skip more elements than our list holds, we get an empty
enumeration back. Take and Skip together can be very
powerful for stuff like pagination.

var list = new List<int>();
list.Add(1);
list.Add(2);

// Result: [1]
var takeOne = list.Take(1);

// Result: [1, 2]
var takeOneHundred = list.Take(100);

https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.take?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.skip?view=net-6.0

Distinct(By)

Distinct returns a new enumerable where all duplicates are
removed, kind of like a Set. Be careful that for reference
type the default is to check for equality of references,
which can lead to false results. The result set can be the
same or smaller.

DistinctBy works similar to Distinct but instead of the
level of the object itself we can define a projection to a
property where we want to have a distinct result set.

var list = new List<int>();
list.Add(1);
list.Add(2);
list.Add(3);

var list = new List<int>();
list.Add(1);
list.Add(1);
list.Add(2);

// [1, 2]
var uniqueElements = list.Distinct();

https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.distinct?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.distinctby?view=net-6.0

OfType

OfType checks every element in the enumeration if it is of
a given type (also inherited types count as that given type)
and returns them in a new enumeration. That helps
especially if we have untyped arrays (object) or we want a
special subclass of the given enumeration.

var people = new List<Person>
{
 new Person("Steven", 31),
 new Person("Katarina", 29),
 new Person("Nils", 31)
};

// [
// Person { Name = Steven, Age = 31 },
// Person { Name = Katarina, Age = 29 }
//]
var uniqueAgedPeople = people.DistinctBy(p => p.Age);

record Person(string Name, int Age);

var fruits = new List<Fruit>
{
 new Banana(),
 new Apple()
};

// [
// Apple { }
//]
var apples = fruits.OfType<Apple>();

record Fruit;
record Banana : Fruit;
record Apple : Fruit;

https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.oftype?view=net-6.0

Projection

Projection describes the transformation of an object into a
new form. By using projections, you can create a new type
which is built from your original type.

Select

With Select we create a projection from one item to
another. Simply speaking we map from our a given type to
a desired type. The result set has the same amount of items
as the source set.

SelectMany

var objects = new List<SourceObject>
{
 new SourceObject(1),
 new SourceObject(2),
};

// [
// TargetObject { NumberAsString: "1" },
// TargetObject { NumberAsString: "2" },
//]
var targetObjects = objects.Select(o => new
TargetObject(o.ToString()));

record SourceObject(int Number);
record TargetObject(string NumberAsString);

https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.select?view=net-6.0

SelectMany is used to flatten lists. If you have a list inside a
list we can use it to flatten this into a one dimensional
representation.

var recipes = new List<Recipe>
{
 new Recipe("Pizza", new() { "Tomato Sauce, Basil" }),
 new Recipe("Hot Water", new() { "Water" }),
};

// [
// "Tomato Sauce", "Basil", "Water"
//]
var allIngredients = recipes.SelectMany(r => r.Ingredients);

record Recipe(string Name, List<string> Ingredients);

https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.selectmany?view=net-6.0

Aggregation

Aggregation describes the process of reducing the whole
enumeration to a single value.

Count

With Count we count elements by a given function. If the
function evaluates to true, we increase the counter by one.

Aggregate

Aggregate, also known as reduce, aggregates/reduces

all elements into a scalar value. A prime example is the
sum of a list. We start with 0 and add each element on top
until we enumerated through our enumeration. Aggregates
first parameter is the start value. An empty enumeration
will result in returning your start value.

var names = new[] { "Steven", "Marie", "Steven" };

// 2
var stevens = names.Count(n => n == "Steven");

https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.count?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.aggregate?view=net-6.0

Max(By)

Max(By) retrieves the biggest element. This also can be
represented by an aggregate function. If Max or MaxBy is
presented an empty enumeration it will throw an
exception, that the sequence contains no element.

Of course Min(By) works similar. The difference is of
course that the smallest value is retrieved instead of the
biggest.

var numbers = new[] { 1, 2, 3 };

// 6
var sum = numbers.Aggregate(0, (curr, next) => curr + next);

// 6
var sumLinq = numbers.Sum();

// 3
var max = new[] { 1, 2, 3 }.Max();

var people = new[]
{
 new Person("Steven", 31),
 new Person("Jean", 22)
};

// Person { Name: Steven, Age: 31 }
var oldest = people.MaxBy(p => p.Age);

record Person(string Name, int Age);

https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.max?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.maxby?view=net-6.0

Quantification

This chapter looks into quantification of elements. Those
operations want to measure the quantity of something.

Any

Any checks if at least one element satisfies your condition.
If so, it returns true. If there is no element that meets the
condition, then it returns false. Any also immediately stops
processing once it founds one element. It returns false if
the given enumeration is empty.

var fruits = new[]
{
 new Fruit("Banana", 89),
 new Fruit("Apple", 51),
};

// true
var hasDenseFood = fruits.Any(f => f.CaloriesPer100Gramm > 80);

record Fruit(string Name, int CaloriesPer100Gramm);

https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.any?view=net-6.0

All

As the name implies checks if All of your elements in the
list satisfy a certain condition. If so returns true, otherwise
false. If All finds an element which does not satisfy the
condition it immediately stops processing and returns
false.

SequenceEquals

SequenceEquals checks if two sequences are equal. Equal
means they have the same amount of entries inside the
enumeration as well as all elements are equal. It uses the
default equality comparer. Two empty lists are also equal.

var fruits = new[]
{
 new Fruit("Banana", 89),
 new Fruit("Apple", 51),
};

// false
var hasDenseFood = fruits.All(f => f.CaloriesPer100Gramm > 80);

record Fruit(string Name, int CaloriesPer100Gramm);

https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.all?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.sequenceequal?view=net-6.0

There is an optional second parameter which allows to pass
in an IEqualityComparer. That is useful if you don’t have
control over the type and therefore can’t override Equals.
By default reference types are compared by their
references against each other, which is not always what you
want.

var numbers = new[] { 1, 2, 3, 4 };
var moreNumbers = new[] { 1, 2, 4, 3 };

// false
var equal = numbers.SequenceEqual(moreNumbers);

Merging

This chapter looks into operations which are responsible of
merging two or more enumerations into one object.

Join

Join works similar to a SQL Inner-Join. We have two sets
we want to join. The next two arguments are the "key"
selectors of each list. What Join basically does is it takes
every element in list A and compares it with the given "key-
selector" against the key-selector of list b. If it matches we
can create a new object C, which can consist out of those
two elements.

https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.join?view=net-6.0

Zip

With Zip we "merge" two lists by a given merge function.
We merge objects together until we run out of objects on
either of the lanes. As seen in the example: The first lane
has 2 elements, the second has 3. Therefore the result set
contains only 2 elements.

var fruits = new[]
{
 new Fruit(1, "Banana", 89),
 new Fruit(2, "Apple", 51),
};

var classification = new[]
{
 new FruitClassification(1, "Magnesium-rich")
};

// { Name = Banana, Classification = Magnesium-rich }

var fruitWithClassification = fruits.Join(
 classification,
 f => f.FruitId, c => c.FruitId,
 (f, c) => new { f.Name, Classification = c.Classification });

foreach(var t in fruitWithClassification) Console.Write(t);

record Fruit(int FruitId, string Name, int CaloriesPer100Gramm);
record FruitClassification(int FruitId, string Classification);

var letters = new[] { "A", "B", "C", "D", "E" };
var numbers = new[] { 1, 2, 3 };
// ["A1", "B2", "C3"]
var merged = letters.Zip(numbers, (l, n) => l + n);

https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.zip?view=net-6.0

Element

This chapter looks closer how to retrieve a specific item
from the enumeration.

First

First returns the first occurrence of an enumeration. Even
if there are elements later it always returns immediately
after the first found item. If no element is found, it throws
an exception.

Single

var people = new[]
{
 new Person("Steven", 31),
 new Person("Melissa", 32),
 new Person("Dan", 28)
};

// Person { Name: Steven, Age: 31 }
var firstOver30 = people.First(p => p.Age > 30);

record Person(string Name, int Age);

http://www.apple.com/uk

Single does not return immediately after the first
occurrence. The difference to First is that Single ensures
there is not a second item of the given type / predicate.
Therefore Single has to go through the whole enumeration
(worst case) if it can find another item. If so, it throws an
exception. If no element is found, it throws an exception.

FirstOrDefault /
SingleOrDefault

If no element is found in the given enumeration it returns it
the default (for reference types null and for value types the
given default like 0 for an integer). Since .NET6 we can pass
in what "default" means to us. Therefore we can have non-
nullable reference types if we wish or any given number /
float / string.

var people = new[]
{
 new Person("Steven", 31),
 new Person("Melissa", 32),
 new Person("Dan", 28)
};

// Person { Name: Steven, Age: 31 }
var steven = people.Single(p => p.Name == "Steven");

// This throws an exception as there are
// multiple people above 30
var above30 = people.Single(p => p.Age > 30);

record Person(string Name, int Age);

https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.single?view=net-6.0

var people = new[]
{
 new Person("Steven", 31),
 new Person("Melissa", 32),
 new Person("Dan", 28)
};

// null, as the default of a reference type is null
var steven = people.FirstOrDefault(p => p.Name == "Jane");

// We create a new object when we can't encounter a person
// above 60 years
// Person { Name: Some Name, Age: 62 }
var above60 = people.SingleOrDefault(
 p => p.Age > 60,
 new Person("Some Name", 62)
);

record Person(string Name, int Age);

Materialisation / Conversion

ToLookup

This methods creates a lookup. A lookup is defined that we
have a key which can point to list of objects (1 to n relation).
The first argument takes the "key"-selector. The second
selector is the "value". This can be the object itself or a
property of the object itself. At the end we have a list of
distinct keys where the values share that exact key. A
LookUp-object is immutable. You can't add elements
afterwards.

var products = new[]
{
 new Product("Smartphone", "Electronic"),
 new Product("PC", "Electronic"),
 new Product("Apple", "Fruit")
};

// IGrouping<string, Product>
// [
// "Electronic": ["Smartphone", "PC"],
// "Apple": ["Fruit"]
//]
var lookup = products.ToLookup(k => k.Category, elem => elem);

record Product(string Name, string Category);

https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.tolookup?view=net-6.0

ToDictionary

ToDictionary works similar to ToLookup with a key
difference. The ToDictionary method only allows 1 to 1
relations. If two items share the same key, it will result in an
exception that the key is already present. Also the
dictionary can be mutated afterwards (for example with the
Add method).

var products = new[]
{
 new Product(1, "Smartphone"),
 new Product(2, "PC"),
 new Product(3, "Apple")
};

// IGrouping<string, Product>
// [
// 1: Product { Id: 1, Name: "Smartphone" },
// 2: Product { Id: 2, Name: "PC" },
// 3: Product { Id: 3, Name: "Apple" }
//]
var idToProductMapping = products.ToDictionary(k => k.Id, elem =>
elem);

// Product { Id: 1, Name: "Smartphone" }
var itemWithId1 = idToProductMapping[1];

record Product(int Id, string Name);

https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.todictionary?view=net-6.0

ToList / ToArray

As mentioned at the beginning, objects of the type
Enumerable are not evaluated directly, but only when they
are materialised. Beside quantifiers like Count or Sum there
is also the possibility to pack the complete enumeration
into a typed collection / array (ToArray) or list (ToList).
With this we create the enumeration in memory at exactly
this time.

If we take the example from the beginning and call ToList
directly, we see that the count does not change anymore.

var list = new List<int>();
list.Add(1);
list.Add(2);

var evenNumbers = list.Where(n => n % 2 == 0).ToList();

list.Add(4);
// This returns now only 1 as we materialised the list
Console.WriteLine($"Even numbers in list: evenNumbers.Count()}");

https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.toarray?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.tolist?view=net-6.0

Grouping

This chapter will look into grouping capabilities of LINQ.

GroupBy

GroupBy groups the enumeration by a given projection /
key. All elements which share this exact key get grouped
together. It is almost identical to ToLookup with a very big
difference. GroupBy means "I am building an object to
represent the question 'what would these things look like if
I organised them by group?'" Calling ToLookup means "I
want a cache of the entire thing right now organised by
group.”

var products = new[]
{
 new Product("Smartphone", "Electronic"),
 new Product("PC", "Electronic"),
 new Product("Apple", "Fruit")
};

// GroupBy creates an IEnumerable<IGrouping<string, Product>>
// This is a big difference to ToLookup where we don't have
// the "wrapping" IEnumerable
// [
// "Electronic": ["Smartphone", "PC"],
// "Apple": ["Fruit"]
//]
var lookup = products.GroupBy(k => k.Category, elem => elem);

record Product(string Name, string Category);

https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.groupby?view=net-6.0

Set

This chapter looks into functions, which behave like sets.
Sets are specially in the sense that they only hold distinct
(disjoint) objects in them.

Union

The union of two lists will result in every distinct element
which is in both of your lists. It behaves like a set, so
duplicated items are removed. Just imagine you have both
lists together and call Distinct.

Intersect

Intersect works similiar to Union but now we check which
elements are present in list A AND list B. Only elements

var numbers1 = new[] { 1, 1, 2 };
var numbers2 = new[] { 2, 3, 4 };

// [1, 2, 3, 4]
var result = numbers1.Union(numbers2);

https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.union?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.intersect?view=net-6.0

present in both will be in the result set. Also here: Only
unique items are in the new list. Duplicates are
automatically removed.

var numbers1 = new[] { 1, 1, 2 };
var numbers2 = new[] { 2, 3, 4 };

// [2]
var result = numbers1.Intersect(numbers2);

Real life samples

In this section you will find some “real life” examples
which are more than just one method call. It consists out of
runnable dotnetfiddle examples. Therefore you can just
run the example or modify at your own will.

• Pagination of blog posts: https://dotnetfiddle.net/hsSIPV
• Best paid employee by department: https://

dotnetfiddle.net/e2IfQu

https://dotnetfiddle.net/hsSIPV
https://dotnetfiddle.net/e2IfQu
https://dotnetfiddle.net/e2IfQu

Epilog
About Me

Hey I am Steven and author of that small
“booklet”. You can reach out via
multiple channels I will list below. Any
feedback welcome. Also newer version
will come with more examples. So if

you are missing something out, which I
should add to the party, just let me know

and I will update this little book.

https://steven-giesel.com
https://steven-giesel.com
https://steven-giesel.com
https://steven-giesel.com
https://steven-giesel.com
https://steven-giesel.com
https://steven-giesel.com
https://steven-giesel.com
https://steven-giesel.com
https://steven-giesel.com
https://steven-giesel.com
https://steven-giesel.com
https://steven-giesel.com
https://www.linkedin.com/in/steven-giesel/
https://www.linkedin.com/in/steven-giesel/
https://www.linkedin.com/in/steven-giesel/
https://www.linkedin.com/in/steven-giesel/
https://www.linkedin.com/in/steven-giesel/
https://www.linkedin.com/in/steven-giesel/
https://www.linkedin.com/in/steven-giesel/
https://www.linkedin.com/in/steven-giesel/
https://www.linkedin.com/in/steven-giesel/
https://www.linkedin.com/in/steven-giesel/
https://www.linkedin.com/in/steven-giesel/
https://www.linkedin.com/in/steven-giesel/
https://www.linkedin.com/in/steven-giesel/
https://www.linkedin.com/in/steven-giesel/
https://www.linkedin.com/in/steven-giesel/
https://www.linkedin.com/in/steven-giesel/
https://www.linkedin.com/in/steven-giesel/
https://www.linkedin.com/in/steven-giesel/
https://www.linkedin.com/in/steven-giesel/
https://www.linkedin.com/in/steven-giesel/
https://www.linkedin.com/in/steven-giesel/
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet
https://github.com/linkdotnet

Further Resources / Reads

• Generator-Function in C# - What does yield do?
• LINQMarbles - Interactive LINQ diagrams
• IEnumerable vs IQueryable - What's the difference
• Microsoft Documentation for Enumerable

Version

Version 1.3 (2023-12-03)

• Added LINQ-Marbles link

Version 1.22 (2023-03-27)

• Fixed that LINQ join behaves closer to SQL INNER join

Version 1.21 (2022-10-14)

• Naming is hard and therefore corrected a variable name

Version 1.2 (2022-09-16)

• Corrected code and explanation in introduction

Version 1.1 (2022-08-26)

• Corrected links

https://steven-giesel.com/blogPost/994467f6-2429-4534-ad43-c0777076ab22
https://linqmarbles.info/
https://steven-giesel.com/blogPost/994467f6-2429-4534-ad43-c0777076ab22
https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable?view=net-6.0

• Fixed Max throwing exception when empty
• Aggregate explanation for empty enumerable

Version 1.0 (2022-08-25)

• Initial Release

	Prologue
	Table of contents
	What is LINQ?
	IEnumerable

	Mindmap
	Filtering
	Where
	Take
	Skip
	Distinct(By)
	OfType

	Projection
	Select
	SelectMany

	Aggregation
	Count
	Aggregate
	Max(By)

	Quantification
	Any
	All

	SequenceEquals
	Merging
	Join
	Zip

	Element
	First
	Single
	FirstOrDefault / SingleOrDefault

	Materialisation / Conversion
	ToLookup
	ToDictionary
	ToList / ToArray

	Grouping
	GroupBy

	Set
	Union
	Intersect

	Real life samples
	Epilog
	About Me
	Further Resources / Reads
	Version

