
Design Patterns

explained


with sketches

by Steven Giesel



14           Thanks

15           Version

11          Adapter

12          Proxy

13          Facade

8            Singleton

9            Builder

10           Factory method


3            Mediator

4            Strategy

5            Memento

6            Chain of Command

7            Iterator


1            What is a “Design Pattern”?

2            Disclaimer


Epilog

Structural

Creational

Behavioral

Prolog

Table of contents



What is a 

“Design Pattern”?
Design patterns describe a solution to a common set of problems. Like a blueprint, which 
you can customize for your specific problem you want to solve. There are basically 3 
categories we can put those design patterns in�

�  gives a mechanism how we can create objects with the most flexibilit�

�  is about giving flexibility and efficiency to a larger structure of object�

�  is about how objects or components communicate with each other as well 
as how they share responsibilites.





This small eBook gives you a nice introduction or refresher over some of them.

Creational

Structural

Behavioral



Disclaimer

Once you have learned a new design pattern you want to use it everywhere. But there is a 
certain risk that you make your code more complex and less readable just by "over-
introducing" certain patterns. Sometimes a new MyObject( ) is easier than using a factory.



I will just show some examples in this small eBook. As always practice makes the master.

“If all you have is a hammer, everything looks like a nail.”




Mediator
Behavioral

The waiter mediates between you (the client) and the kitchen. Neither the kitchen nor you 
know directly from each other. He takes your order and goes with that to the kitchen, 
which then will (hopefully) come back with food.

� Reduces dependencies between component�
� Change interactions between objects independently

Take Away

Waiter aka 
Mediator

The kitchen aka 
another component 

You (client) 
aka a component

You order food Places the order

Gives the mealServes the dish

More info

https://steven-giesel.com/blogPost/064ca62a-b384-45da-9212-4c3840e5ba9c


Strategy
Behavioral

You have different  to go to the airport (by taxi, bus or bicycle). You decide in 
the moment, depending on some conditions like traffic and cost, which means of 
transportation you use. All of them are similar and they serve the same purpose.

strategies

� Easy to swap out algorithmn. Also they are decoupled from the other logi�
� Goes hand in hand with Open/Closed Principle as well as “favor composition over 

inheritance�
� Isolate details away (seperation of concerns)

You

Wants to go  
the airport

Take Away



Memento
Behavioral

Paint  the last actions we did, so if we accidentally add a dinosaur to our 
picture, Paint can revert or undo to the last state. So Paint stores every state of our nice 
picture!

memorizes

� Store a snapshot of the state without revealing the state to the outside worl�
� Every concern is encapsulated in its own objec�
� The state can grow quite fast if not controlle�
� Undo-Redo can be done with two stack’s with the  patternmemento

Take Away

Paint

RedoUndo

Restore last state

Tools

Damn it, I accidently drew a

dinosaur! Let’s revert the 
last action!



Chain of Responsibility
Behavioral

There is a clear  of people involved when calling the IT support. First we have a 
chatbot, which tries to solve our issue. If that doesn’t help, we go further with a IT 
support person, which tries to resolve our issue.

chain

� Perfect if we want to process something in specific orde�
� Seperation of concerns - Each command handler can do one thin�
� We can introduce new handlers with ease - Open/Closed Principle

Take Away

Hey Support, my 
Windows is not 

working! Did you reboot? Did you try Linux?

Request Chatbot 
Handler

IT-Support 
Handler



Iterator
Behavioral

When pressing the next button in your music app, you  through your playlist one by 
one. You don’t care how the app organizes the list, you just want to get away from getting 
rick rolled!

iterate

� Every foreach / IEnumerable in .NET uses the  patter�
� Single Responsibility Principle: We can abstract away how we iterate through a 

complex objec�
� The UML describes how the .NET type IEnumerable works

Iterator

Take Away

Rick Astley - Never Gonna Give You Up

Go to the next track.

I got Rick-Rolled enough!



Singleton
Creational

Imagine your office has one printer, and one printer only. You get the same printer 
instance independent if you choose the printer from your PC or from your coworkers PC.

� Only one instance, which is only initialized once�
� Can be useful for things like loggin�
� Be careful though, as it can hide bad design and violates the “Single 

Responsibility” principle

You Coworker

CoworkerCoworker

Take Away

Office Printer 
Only a  one availablesingle



Builder
Creational

A house is a very complex object to build. It involves walls, doors, and a rooftop. So when 
we built one, we can hire a builder for us, which does the job one by one, piece by piece 
until we have our beautiful house!

� Perfect to get rid of big constructors, which take a huge amount of parameter�
� Encapsulate code for construction and representatio�
� The builder needs “access” to the internal representation and creatio�
� StringBuilder is a famous example for the pattern

Take Away

More info

https://steven-giesel.com/blogPost/cd21a3f7-11fc-4d57-9278-3e21b34d030c


Factory method
Creational

Tom want’s to get some candy. So he goes to the vending machine, which has candy for 
him. With a press of a button he can get different kinds of candy, which the machine 
creates for him.

Tom

More info

� Avoid tight coupling between creator and the concrete implementation�
� Can be extended to Abstract Factory patter�
� Factory only exposes a common shared type - perfect for the Open-Close 

Principle

Take Away

Presses a button and gets 


a candy

I want some Candy!!!

Creates  different 
Candy

https://steven-giesel.com/blogPost/cd21a3f7-11fc-4d57-9278-3e21b34d030c


Adapter
Structural

An EU power plug does not fit into a US wall socket, they are incompatible. With the EU to 
US power , we operate seemingly incompatible interfaces to operate together. It 
is a translator between two objects.

adapter

� Holds up Single-Responsibility and the Open-Close principle as we decouple the 
logic how different objects have to communicate with each other�

� Every Mapper in your code is an implementation of the  pattern.adapter

Take Away

US Wall SocketEU to US 
Adapter

EU Power Plug US Power Plug



Proxy
Structural

When we pay with Apple Pay and similar services the merchant does not see the credit 
card which is linked to Apple Pay. Apple Pay acts as a  for the “real” credit card.proxy

� Extending a class without subclassing it (Open-Close Principle�
� Is transparent from the outside world. Your user doesn’t know it is a proxy�
� Entity Framework uses them to lazy load entities. (It sits on top of your getter’s.)

Take Away

I want to pay with Apple Pay!

U
ses the credit card 


A
cts instead of it

That makes 15.99$

Pays with Apple Pay Only sees Apple Pay

not the Credit Card



Facade
Structural

Imagine a home theater system. The remote control is the facade, while the various 
devices it controls (e.g. TV, Blu-ray player, sound system) are the subsystems. The remote 
control provides a simplified interface for controlling the various devices,

� Simplifying the interface of a complex system, making it easier to us�
� Hiding the complexity of the subsystems from the clien�
� Allowing for easier changes to the subsystems without affecting the clients

Take Away

You Remote control

aka the Facade


to more complex systems

Use simple remote control  

to control various devices



Thanks

steven-giesel.com linkdotnetSteven Giesel

A big shout out to for the design template.



Also thanks to  as I am using their icons all over the place. 



A big shout-out goes to you dear reader. If you have any input or requests let me know. 
Down there you will find some links to how you can reach out to me. I will be more than 
happy to get some feedback and new ideas to continue the journey! 



As you might know, creating those free eBooks takes time and resources. If you want to 
support me in any way you also find opportunities on my GitHub account or on my 
webpage.

Mahdiye Ijavi 

flaticon.com

https://steven-giesel.com/
https://github.com/linkdotnet
https://www.linkedin.com/in/steven-giesel/
https://www.linkedin.com/in/mahdiye-ijavi-dr-sc-70472166/
https://www.flaticon.com/


Version

steven-giesel.com linkdotnetSteven Giesel

� Fixed some grammar and 
spelling error�

� Made Chain example clearer


1.01 - 2022-11-25

� Added Iterator pattern


1.1 - 2022-11-28

� Initial Release


1.0 - 2022-11-16

� New Patterns: Facade


1.2 - 2023-01-19

https://steven-giesel.com/
https://github.com/linkdotnet
https://www.linkedin.com/in/steven-giesel/

