
“Why did the developer quit his job? He
didn't get arrays.”

 Lowering

Steven Giesel // .NET User Group Zurich // How to misuse sharplab.io for a whole talk!

What is it and why should I care?

http://sharplab.io

Question: What does these two have in common?

Question: What does these two have in common?

Answer: The C# compiler doesn’t know them when creating CIL code!

 Motivation
"Understand one level below your normal abstraction layer." -Neal Ford

• Understanding better what your C# really does

• Predicting performance (and) implications of your code

• Detect bugs / understand bugs or even better: Prevent them

• You want to understand why some constructs don’t “really” exist like:
foreach, var, lock, using, async / await, yield, Anonymous lambda, records, extension methods, LINQ
query syntax, stackalloc, Pikachu, events, is / as operator, ?? / ?. operator, pattern matching, Blazor or
Razor components, type interference, anonymous types, switch expression, index ranges, string concat
of const strings via “+” operator, ternary operator, local functions, using static directive, ValueTuple,
Deconstructor, Range …

• You are geeky like me and want to understand the core of your language

What is “Lowering”?

What is “Lowering”?

Compiling

CIL
(Common Intermediate Language)

Translating one language to another language

What is “Lowering”?

Translating high level features to low level features in the same language

Lowering

Compiling

CIL
(Common Intermediate Language)

Translating one language to another language

What is “Lowering”?

• Another name you know for that is “syntactic sugar”

• Or “compiler magic”

• Lowering is part of the whole process, when you compile your C# code
into an assembly (CIL code)

• Lowering is like synonyms in the same language:
“a or b or both” instead for “a and/or b”
“from now on” instead of “henceforth”

• Can bring benefits in terms of optimization

Let’s start easy - var

var myString = "Hello World";

Console.Write(myString);

string myString = "Hello World";

Console.Write(myString);

Gets lowered to

• Easy one, var does not exist and gets resolved to its concrete type

• That is called type interference (the ability to deduct the type from the context)

Case Study 2.1: foreach array

var range = new[] { 1, 2 };

foreach(var item in range)
 Console.Write(item);

int[] array = new int[2];
array[0] = 1;
array[1] = 2;
int[] array2 = array;
int num = 0;
while (num < array2.Length)
{
 int value = array2[num];
 Console.Write(value);
 num++;
}

• There is no foreach anymore in the lowered code

• Translated into a while loop

• Also for loops get usually lowered to a while loop

• Also there is no collection initializer anymore

Gets lowered to

Case Study 2.2: foreach list

var list = new List<int> { 1, 2 };

foreach(var item in list)
 Console.Write(item);

List<int> list = new List<int>();
list.Add(1);
list.Add(2);
List<int>.Enumerator enumerator = list.GetEnumerator();
try
{
 while (enumerator.MoveNext())
 {
 Console.Write(enumerator.Current);
 }
}
finally
{
 ((IDisposable)enumerator).Dispose();
}

Gets lowered to

• Still no foreach in sight

• We are using Enumerators with (MoveNext and Current)

• IEnumerable is like a basket full of apples

• IEnumerator goes through one at a time, until you find the perfect apple

• Try-Finally block as Enumerator inherits from Disposable

Foreach without IEnumerable
Let’s code some magic

Foreach without IEnumerable

foreach (int number in 2..5)
{

Console.WriteLine(number);
}

Foreach without IEnumerable
Range-object is not enumerable … normally

foreach (int number in 2..5)
{
 Console.WriteLine(number);
}

public static class Extensions
{
 public static IEnumerator<int> GetEnumerator(this Range r)
 => Enumerable.Range(r.Start.Value, r.End.Value - r.Start.Value)
 .GetEnumerator();
}

C# 3: If IEnumerable isn’t implemented try to grab
 appropriate GetEnumerator method.
C# 9: Extension GetEnumerator support for foreach loops.

Foreach without IEnumerable
Range-object is not enumerable … normally

Extra: Await everything

await 2.Seconds();
await TimeSpan.FromSeconds(2);

Extra: Await everything
TimeSpan is not awaitable … normally

await 2.Seconds();
await TimeSpan.FromSeconds(2);

public static class Extensions
{
 public static TaskAwaiter GetAwaiter(this TimeSpan ts)
 => Task.Delay(ts).GetAwaiter();

 public static TimeSpan Seconds(this int s)
 => TimeSpan.FromSeconds(s);
}

Extra: Await everything
TimeSpan is not awaitable … normally

Back on track

Case Study 3: using

Task<string> GetContentFromUrlAsync(string url)
{
 // Don't do this! Creating new HttpClients
 // is expensive and has other caveats
 // This is for the sake of demonstration
 using var client = new HttpClient();
 return client.GetStringAsync(url);
}

• Let’s have a look how using works to understand what might be an issue
here

Case Study 3: using

Task<string> GetContentFromUrlAsync(string url)
{
 // Don't do this! Creating new HttpClients
 // is expensive and has other caveats
 // This is for the sake of demonstration
 using var client = new HttpClient();
 return client.GetStringAsync(url);
}

HttpClient httpClient = new HttpClient();
try
{
 return httpClient.GetStringAsync(url);
}
finally
{
 if (httpClient != null)
 {
 ((IDisposable)httpClient).Dispose();
 }
}

Gets lowered to

• using guarantees* to dispose via a finally block

• The finally block gets executed after return

• This will dispose the HttpClient and therefore the awaiter of our call with be
presented with a nice ObjectDisposedException

* If you don’t pull the plug out of your PC, get hit by a meteor or kill it via task manager

Case Study 4: is operator

int Do(Person? p)
{
 if (p is { Age: < 25 })
 return 1;
 return 10;
}

int Do(Person? p)
{
 if (p.Age < 25)
 return 1;
 return 10;
}

Are these code snippets equal?

Case Study 4: is operator

int Do(Person? p)
{
 if (p is { Age: < 25 })
 return 1;
 return 10;
}

int Do(Person? p)
{
 if (p.Age < 25)
 return 1;
 return 10;
}

Are these code snippets equal?

p != null && p.Age < 25;

Case Study 4: is operator

int Do(Person? p)
{
 if (p is { Age: < 25 })
 return 1;
 return 10;
}

int Do(Person? p)
{
 if (p.Age < 25)
 return 1;
 return 10;
}

Are these code snippets equal?

p != null && p.Age < 25;

• is checks also for null values.

• This is also true if you have nested properties

Bonus: Case Study 5: anonymous functions

for (var i = 0; i < 5; i++)
{
 list.Add(() => Console.WriteLine(i));
}

list.ForEach(action => action());

What is the output of the following snippet?

Let’s try it out on sharplab.io.

A detailed example can be found here.

https://sharplab.io/#v2:C4LgTgrgdgPgAgBgARwIwBYDcBYAUHAJlTzwDcBDMJAGwEsBnYJAXiSgFMB3JAGQeAA8aAgD4AFAEocuPADMA9lTEUqtFkgSYkagUgCsW2gGojEvAG88SazX4A6AIIATJ2MksRKVAE4xtCVJ4AL4kuHSMdgBiigCi5ADGABZiCcC08lAeSKnpUJJSQA=
https://linkdotnet.github.io/tips-and-tricks/misc/#be-careful-of-closures

Thanks to sharplab.io for making
my presentation possible ;)

And of course: You <3

http://sharplab.io

