
“Why did the developer quit his job? He 
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What is it and why should I care?
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Question: What does these two have in common?



Question: What does these two have in common?

Answer: The C# compiler doesn’t know them when creating CIL code!



 Motivation
"Understand one level below your normal abstraction layer." -Neal Ford

• Understanding better what your C# really does 

• Predicting performance (and) implications of your code 

• Detect bugs / understand bugs or even better: Prevent them 

• You want to understand why some constructs don’t “really” exist like: 
foreach, var, lock, using, async / await, yield, Anonymous lambda, records, extension methods, LINQ 
query syntax, stackalloc, Pikachu, events, is / as operator, ?? / ?. operator, pattern matching, Blazor or 
Razor components, type interference, anonymous types, switch expression, index ranges, string concat 
of const strings via “+” operator, ternary operator, local functions, using static directive, ValueTuple, 
Deconstructor, Range … 

• You are geeky like me and want to understand the core of your language



What is “Lowering”?
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Translating high level features to low level features in the same language
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Compiling
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Translating one language to another language



What is “Lowering”?

• Another name you know for that is “syntactic sugar” 

• Or “compiler magic” 

• Lowering is part of the whole process, when you compile your C# code 
into an assembly (CIL code) 

• Lowering is like synonyms in the same language: 
“a or b or both” instead for “a and/or b” 
“from now on” instead of “henceforth”  

• Can bring benefits in terms of optimization



Let’s start easy - var

var myString = "Hello World";

Console.Write(myString);

string myString = "Hello World";

Console.Write(myString);

Gets lowered to

• Easy one, var does not exist and gets resolved to its concrete type 

• That is called type interference (the ability to deduct the type from the context)



Case Study 2.1: foreach array

var range = new[] { 1, 2 };

foreach(var item in range)
    Console.Write(item);

int[] array = new int[2];
array[0] = 1;
array[1] = 2;
int[] array2 = array;
int num = 0;
while (num < array2.Length)
{
    int value = array2[num];
    Console.Write(value);
    num++;
}

• There is no foreach anymore in the lowered code 

• Translated into a while loop 

• Also for loops get usually lowered to a while loop 

• Also there is no collection initializer anymore

Gets lowered to



Case Study 2.2: foreach list

var list = new List<int> { 1, 2 };

foreach(var item in list)
    Console.Write(item);

List<int> list = new List<int>();
list.Add(1);
list.Add(2);
List<int>.Enumerator enumerator = list.GetEnumerator();
try
{
    while (enumerator.MoveNext())
    {
        Console.Write(enumerator.Current);
    }
}
finally
{
    ((IDisposable)enumerator).Dispose();
}

Gets lowered to

• Still no foreach in sight 

• We are using Enumerators with (MoveNext and Current) 

• IEnumerable is like a basket full of apples 

• IEnumerator goes through one at a time, until you find the perfect apple 

• Try-Finally block as Enumerator inherits from Disposable



Foreach without IEnumerable
Let’s code some magic



Foreach without IEnumerable



foreach (int number in 2..5)
{

Console.WriteLine(number);
}

Foreach without IEnumerable
Range-object is not enumerable … normally



foreach (int number in 2..5)
{
    Console.WriteLine(number);
}

public static class Extensions
{
    public static IEnumerator<int> GetEnumerator(this Range r)
        => Enumerable.Range(r.Start.Value, r.End.Value - r.Start.Value)
            .GetEnumerator();
}

C# 3: If IEnumerable isn’t implemented try to grab 
          appropriate GetEnumerator method. 
C# 9: Extension GetEnumerator support for foreach loops. 

Foreach without IEnumerable
Range-object is not enumerable … normally



Extra: Await everything



await 2.Seconds();
await TimeSpan.FromSeconds(2);

Extra: Await everything
TimeSpan is not awaitable … normally



await 2.Seconds();
await TimeSpan.FromSeconds(2);

public static class Extensions
{
    public static TaskAwaiter GetAwaiter(this TimeSpan ts)
        => Task.Delay(ts).GetAwaiter();

    public static TimeSpan Seconds(this int s)
        => TimeSpan.FromSeconds(s);
}

Extra: Await everything
TimeSpan is not awaitable … normally



Back on track



Case Study 3: using

Task<string> GetContentFromUrlAsync(string url)
{
    // Don't do this! Creating new HttpClients
    // is expensive and has other caveats
    // This is for the sake of demonstration
    using var client = new HttpClient();
        return client.GetStringAsync(url);
}

• Let’s have a look how using works to understand what might be an issue 
here



Case Study 3: using

Task<string> GetContentFromUrlAsync(string url)
{
    // Don't do this! Creating new HttpClients
    // is expensive and has other caveats
    // This is for the sake of demonstration
    using var client = new HttpClient();
        return client.GetStringAsync(url);
}

HttpClient httpClient = new HttpClient();
try
{
    return httpClient.GetStringAsync(url);
}
finally
{
    if (httpClient != null)
    {
        ((IDisposable)httpClient).Dispose();
    }
}

Gets lowered to

• using guarantees* to dispose via a finally block 

• The finally block gets executed after return 

• This will dispose the HttpClient and therefore the awaiter of our call with be 
presented with a nice ObjectDisposedException

* If you don’t pull the plug out of your PC, get hit by a meteor or kill it via task manager



Case Study 4: is operator

int Do(Person? p)
{
    if (p is { Age: < 25 })
        return 1;
    return 10;
}

int Do(Person? p)
{
    if (p.Age < 25)
        return 1;
    return 10;
}

Are these code snippets equal?
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{
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Case Study 4: is operator

int Do(Person? p)
{
    if (p is { Age: < 25 })
        return 1;
    return 10;
}

int Do(Person? p)
{
    if (p.Age < 25)
        return 1;
    return 10;
}

Are these code snippets equal?

p != null && p.Age < 25;

• is checks also for null values. 

• This is also true if you have nested properties 



Bonus: Case Study 5: anonymous functions

for (var i = 0; i < 5; i++)
{
    list.Add(() => Console.WriteLine(i));
}

list.ForEach(action => action());

What is the output of the following snippet?

Let’s try it out on sharplab.io.  
 
 
A detailed example can be found here.

https://sharplab.io/#v2:C4LgTgrgdgPgAgBgARwIwBYDcBYAUHAJlTzwDcBDMJAGwEsBnYJAXiSgFMB3JAGQeAA8aAgD4AFAEocuPADMA9lTEUqtFkgSYkagUgCsW2gGojEvAG88SazX4A6AIIATJ2MksRKVAE4xtCVJ4AL4kuHSMdgBiigCi5ADGABZiCcC08lAeSKnpUJJSQA=
https://linkdotnet.github.io/tips-and-tricks/misc/#be-careful-of-closures


Thanks to sharplab.io for making 
my presentation possible ;) 

 
And of course: You <3

http://sharplab.io

