“Why did the developer quit his job? He
didn't get arrays.”



(3 Lowering

What is it and why should | care?

Steven Giesel // .NET User Group Zurich // How to misuse sharplab.io for a whole talk!


http://sharplab.io

o0

$ ~ whoamt --full
name: Steven Gilesel

website: steven-giesel.com
github: Llinkdotnet

linkedin: Steven Gilesel
twitter: -

working: Zuhlke Engineering AG







foreach(var name 1n names)

1
}




Question: What does these two have in common?

foreach(var name 1n names)

1
}




Question: What does these two have in common?

foreach(var name 1n names)

1
}

Answer: The C# compiler doesn’t know them when creating CIL code!



Motivation
"Understand one level below your normal abstraction layer." -Neal Ford

- Understanding better what your C# really does
» Predicting performance (and) implications of your code
- Detect bugs / understand bugs or even better: Prevent them

« You want to understand why some constructs don’t “really” exist like:

foreach, var, lock, using, async / await, yield, Anonymous lambda, records, extension methods, LINQ
query syntax, stackalloc, Pikachu, events, is / as operator, ?? / ?. operator, pattern matching, Blazor or
Razor components, type interference, anonymous types, switch expression, index ranges, string concat
of const strings via “+” operator, ternary operator, local functions, using static directive, ValueTuple,
Deconstructor, Range ...

» You are geeky like me and want to understand the core of your language



Whatis “Lowering”?




Whatis “Lowering”?

Compiling

C:

Translating one language to another language CI L

(Common Intermediate Language)




Whatis “Lowering”?

Lowering

Translating high level features to low level features in the same language

Compiling

Translating one language to another language CI L

(Common Intermediate Language)




Whatis “Lowering”?

Another name you know for that is “syntactic sugar”

Or “compiler magic”

Lowering is part of the whole process, when you compile your C# code
into an assembly (CIL code)

Lowering is like synonyms in the same language:
“a or b or both” instead for “a and/or b”
“from now on” instead of “henceforth”

Emits

instructions v Jla

the VB.NET compile

B.NET Code
cIL -
Ie!

Can bring benefits in terms of optimization

Native Code (0S machine instructions)

NET Framework



Let’s start easy - var

var myString = "Hello World"; Gets lowered to string myString = "Hello World";

Console.Write(myString); Console.Write(myString);

- Easy one, var does not exist and gets resolved to its concrete type

- That is called type interference (the ability to deduct the type from the context)



Case Study 2.1: foreach array

var range = new[] { 1, 2 };
Gets lowered to

foreach(var item in range)
Console.Write(item);

- There is no foreach anymore in the lowered code

- Translated into a while loop

int[] array = new 1nt[2];
array[0] = 1;

array[l] = 2;

int[] array2 = array;

int num = 0;

while (num < array2.Length)

{

int value = array2[num];
Console.Write(value);
num++;

 Also for loops get usually lowered to a while loop

 Also there is no collection initializer anymore



Case Study 2.2: foreach list

var list = new List<int> { 1, 2 }; List<int> list = new List<int>();

list.Add(1);
list.Add(2);

Gets lowered to

foreach(var item in list)
Console.Write(item);

List<int>.Enumerator enumerator = list.GetEnumeratc
try
{
while (enumerator.MoveNext())
{
Console.Write(enumerator.Current);
}
}
finally
{
((IDisposable)enumerator).Dispose();
. Still no foreach in sight ;

- We are using Enumerators with (MoveNext and Current)
- |[Enumerable is like a basket full of apples
- |[Enumerator goes through one at a time, until you find the perfect apple

 Try-Finally block as Enumerator inherits from Disposable



Foreach without IEnumerable




Foreach without IEnumerable



Foreach without IEnumerable

/ Range-object is not enumerable ... normally
foreach (int number in 2..5)

{

Console.WriteLine(number) ;

}



Foreach without IEnumerable

Range-object is not enumerable ... normally
foreach (int number in 2..5)

{

Console.WriteLine(number) ;

public static class

{

Extensions

C# 3: If [IEnumerable isn’t implemented try to grab

appropriate GetEnumerator method.
/C# 9: Extension GetEnumerator support for foreach loops.

fnumerator<int> Getl

public static I

fnumerator (this Range r)

=> Enumerable.Range(r.Start.Value, r.!
.GetEnumerator();

“nd.Value - r.Start.Value)



Extra: Await everything



Extra: Await everything

TimeSpan is not awaitable ... normally

await 2.Seconds(); é__________———-——"“"’—_

awalt TimeSpan.FromSeconds(2);



Extra: Await everything

TimeSpan is not awaitable ... normally

awalt 2.Seconds(); é_____——-—----""‘"——___

awalt TimeSpan.FromSeconds(2);

public static class Extensions

{

public static TaskAwailiter GetAwailter(this TimeSpan ts)
=> Task.Delay(ts).GetAwaiter () ;

public static TimeSpan Seconds(this int s)
=> TimeSpan.FromSeconds(s);



Back on track



Case Study 3: using

Task<string> GetContentFromUrlAsync(string url)

{
// Don't do this! Creating new HttpClients
// 1s expensive and has other caveats
// This is for the sake of demonstration
using var client = new HttpClient();
return client.GetStringAsync(url);
}

» Let’s have a look how using works to understand what might be an issue
here



Case Study 3: using

Task<string> GetContentFromUrlAsync(string url)

{ mere lamered e HttpClient httpClient = new HttpClient();
try
// Don't do this! Creating new HttpClients {
77 Thie Ge for the sake of demonstration Fefun hEEpCLient Getstringhsyne (url);
}
using var client = new HttpClient(); finally
return client.GetStringAsync(url); {
} if (httpClient != null)
{
((IDisposable)httpClient).Dispose();
}
}

« USINg guarantees™ to dispose via a finally block
- The finally block gets executed after return

- This will dispose the HttpClient and therefore the awaiter of our call with be
presented with a nice ObjectDisposedException

*If you don’t pull the plug out of your PC, get hit by a meteor or kill it via task manager



Are these code snippets equal?

Case Study 4: is operator

int Do(Person? p)

{

}

1if (p is { Age: < 25 })
return 1;
return 10;

int Do(Person? p)

{
1if (p.Age < 25)
return 1;
return 10;

}



Case Study 4: is operator

Are these code snippets equal?

int Do(Person? p)

{
1if (p is { Age: < 25 })
return 1f\
return 10;

}

o
N
L
¢
';
*
d

p != null && p.Age < 25;

int Do(Person? p)

{
1if (p.Age < 25)
return 1;
return 10;

}



Case Study 4: is operator

Are these code snippets equal?

int Do(Person? p)

{
1if (p.Age < 25)
return 1;
return 10;
}

int Do(Person? p)

{
1if (p is { Age: < 25 })
return 1fx
return 10;

}

o
o
L
¢
L.
*
¢

p != null && p.Age < 25;

« |s checks also for null values.

« This is also true if you have nested properties



Bonus: Case Study 5: anonymous functions

What is the output of the following snippet?

for (var 1 = 0; 1 < 5; 1++)
{

list.Add(() => Console.WriteLine(1));
}

list.ForEach(action => action());

Let’s try it out on sharplab.io.

A detailed example can be found here.


https://sharplab.io/#v2:C4LgTgrgdgPgAgBgARwIwBYDcBYAUHAJlTzwDcBDMJAGwEsBnYJAXiSgFMB3JAGQeAA8aAgD4AFAEocuPADMA9lTEUqtFkgSYkagUgCsW2gGojEvAG88SazX4A6AIIATJ2MksRKVAE4xtCVJ4AL4kuHSMdgBiigCi5ADGABZiCcC08lAeSKnpUJJSQA=
https://linkdotnet.github.io/tips-and-tricks/misc/#be-careful-of-closures

Thanks to sharplab.io for making
my presentation possible ;)

And of course: You <3



http://sharplab.io

